Leavitt path algebras: (d.o.b. May 31, 2004; Iowa City, Iowa) Entering Adulthood

Gene Abrams

Department of Mathematics Colloquium University of Iowa

March 30, 2018

< 回 > < 三 > < 三 >

University of Colorado @ Colorado Springs

Gene Abrams

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

Overview

1 Leavitt path algebras: Introduction and Motivation

2 Algebraic properties

- 3 Projective modules
- 4 Connections and Applications

Gene Abrams

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

1 Leavitt path algebras: Introduction and Motivation

- 2 Algebraic properties
- 3 Projective modules
- 4 Connections and Applications

Gene Abrams

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.

University of Colorado @ Colorado Springs

-

Gene Abrams

One of the first theorems you saw as an undergraduate student:

Dimension Theorem for Vector Spaces. Every nonzero vector space V has a basis. Moreover, if \mathcal{B} and \mathcal{B}' are two bases for V, then $|\mathcal{B}| = |\mathcal{B}'|$.

Note: V has a basis $\mathcal{B} = \{b_1, b_2, ..., b_n\} \Leftrightarrow V \cong \bigoplus_{i=1}^n \mathbb{R}$ as vector spaces. So:

◆□ > ◆□ > ◆臣 > ◆臣 > □ □ ● ○ ○ ○

University of Colorado @ Colorado Springs

One result of Dimension Theorem, Rephrased:

 $\oplus_{i=1}^{n} \mathbb{R} \cong \oplus_{i=1}^{m} \mathbb{R} \iff m = n.$

Gene Abrams

The same Dimension Theorem holds, with the identical proof, if K is any division ring (i.e., any ring for which every nonzero element has a multiplicative inverse).

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Gene Abrams

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must m = n?

3

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must m = n?

Answer: NO

(But the answer is YES for the rings \mathbb{Z} , $M_2(\mathbb{R})$, $C(\mathbb{R})$)

Example: Consider the ring *S* of linear transformations from an infinite dimensional \mathbb{R} -vector space *V* to itself.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Question: Is the Dimension Theorem true for rings in general? That is, if R is a ring, and $\bigoplus_{i=1}^{n} R \cong \bigoplus_{i=1}^{m} R$ as R-modules, must m = n?

Answer: NO

(But the answer is YES for the rings \mathbb{Z} , $M_2(\mathbb{R})$, $C(\mathbb{R})$)

Example: Consider the ring *S* of linear transformations from an infinite dimensional \mathbb{R} -vector space *V* to itself.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Think of V as $\bigoplus_{i=1}^{\infty} \mathbb{R}$. Then think of S as $\operatorname{RFM}(\mathbb{R})$.

Gene Abrams

Intuitively, S and $S \oplus S$ have a chance to be "the same".

 $M \mapsto$ (Odd numbered columns of M, Even numbered columns of M)

University of Colorado @ Colorado Springs

3

Intuitively, S and $S \oplus S$ have a chance to be "the same".

 $M \mapsto$ (Odd numbered columns of M, Even numbered columns of M)

University of Colorado @ Colorado Springs

-

More formally:

It is not hard to write down matrices Y_1, Y_2 for which

 MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

Gene Abrams

Intuitively, S and $S \oplus S$ have a chance to be "the same".

 $M \mapsto$ (Odd numbered columns of M, Even numbered columns of M)

More formally:

It is not hard to write down matrices Y_1, Y_2 for which

 MY_1 gives the Odd Columns of M, while MY_2 gives the Even Columns of M.

So the previous intuitive map is, formally, $M \mapsto (MY_1, MY_2)$.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Gene Abrams

Similarly, we should be able to 'go back' from pairs of matrices to a single matrix, by interweaving the columns.

University of Colorado @ Colorado Springs

More formally, there are matrices X_1, X_2 for which $(M_1, M_2) \mapsto M_1 X_1 + M_2 X_2$ does this.

Gene Abrams

Here's what's really going on. These equations are easy to verify:

 $Y_1X_1 + Y_2X_2 = I,$ $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$

Gene Abrams

University of Colorado @ Colorado Springs

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Here's what's really going on. These equations are easy to verify:

$$Y_1X_1 + Y_2X_2 = I,$$

 $X_1Y_1 = I = X_2Y_2, \text{ and } X_1Y_2 = 0 = X_2Y_1.$

Using these, we get inverse maps:

$$S o S \oplus S$$
 via $M \mapsto (MY_1, MY_2)$, and
 $S \oplus S \to S$ via $(M_1, M_2) \mapsto M_1X_1 + M_2X_2$.

For example:

$$M \mapsto (MY_1, MY_2) \mapsto MY_1X_1 + MY_2X_2 = M \cdot I = M.$$

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Gene Abrams

Using exactly the same idea, let R be ANY ring which contains four elements y_1, y_2, x_1, x_2 satisfying

$$y_1x_1 + y_2x_2 = 1_R$$

$$x_1y_1 = 1_R = x_2y_2$$
, and $x_1y_2 = 0 = x_2y_1$.

University of Colorado @ Colorado Springs

э

Then $R \cong R \oplus R$.

Gene Abrams

Remark: Here the sets $\{1_R\}$ and $\{x_1, x_2\}$ are each bases for R.

Actually, when $R \cong R \oplus R$ as *R*-modules, then $\bigoplus_{i=1}^{m} R \cong \bigoplus_{i=1}^{n} R$ for all $m, n \in \mathbb{N}$.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

Natural question:

Does there exist *R* with, e.g., $R \cong R \oplus R \oplus R$, but $R \ncong R \oplus R$?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Natural question:

Does there exist R with, e.g., $R \cong R \oplus R \oplus R$, but $R \ncong R \oplus R$?

Theorem

(William G. Leavitt, Trans. Amer. Math. Soc., 1962)

For every $m < n \in \mathbb{N}$ and field K there exists a K-algebra $R = L_{\mathcal{K}}(m, n)$ with $\bigoplus_{i=1}^{m} R \cong \bigoplus_{i=1}^{n} R$, and all isomorphisms between free left R-modules result precisely from this one. Moreover, $L_{K}(m, n)$ is universal with this property.

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

э

The m = 1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n = 2 case that we saw above, $R \cong R^n$ if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

Gene Abrams

The m = 1 situation of Leavitt's Theorem is now somewhat familiar. Similar to the n = 2 case that we saw above, $R \cong R^n$ if and only if there exist

$$x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in R$$

for which

$$\sum_{i=1}^n y_i x_i = 1_R \quad \text{and} \quad x_i y_j = \delta_{i,j} 1_R.$$

 $L_{\mathcal{K}}(1, n)$ is the quotient

$$K < X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n > / < (\sum_{i=1}^n Y_i X_i) - 1_K; X_i Y_j - \delta_{i,j} 1_K >$$

Note: $\operatorname{RFM}(K)$ is much bigger than $L_K(1,2)$.

Gene Abrams

As a result, we have: Let S denote $L_{\mathcal{K}}(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

In particular, $S \cong S^n$.

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Gene Abrams

As a result, we have: Let S denote $L_{\mathcal{K}}(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

3

In particular, $S \cong S^n$.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964) For every field K and $n \ge 2$, $L_K(1, n)$ is simple.

Gene Abrams

As a result, we have: Let S denote $L_{\mathcal{K}}(1, n)$. Then

$$S^a \cong S^b \Leftrightarrow a \equiv b \mod(n-1).$$

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

In particular, $S \cong S^n$.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964) For every field K and $n \ge 2$, $L_K(1, n)$ is simple.

Remember, a ring *R* being *simple* means:

$$\forall \ 0 \neq r \in R, \exists \ \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^n \alpha_i r \beta_i = 1_R.$$

Gene Abrams

As a result, we have: Let S denote $L_{\mathcal{K}}(1, n)$. Then

$$S^a \cong S^b \iff a \equiv b \mod(n-1).$$

In particular, $S \cong S^n$.

It turns out:

Theorem. (Leavitt, Duke J. Math, 1964) For every field K and $n \ge 2$, $L_K(1, n)$ is simple.

Remember, a ring *R* being *simple* means:

$$\forall \ 0 \neq r \in R, \exists \ \alpha_i, \beta_i \in R \text{ with } \sum_{i=1}^n \alpha_i r \beta_i = \mathbf{1}_R.$$

Actually, $L_{\mathcal{K}}(1, n)$ is REALLY simple:

 $\forall \ 0 \neq r \in L_{\mathcal{K}}(1,n), \exists \ \alpha, \beta \in L_{\mathcal{K}}(1,n) \text{ with } \alpha r \beta = \underbrace{1_{\mathcal{L}_{\mathcal{K}}(1,n)}}_{\mathcal{L}_{\mathcal{K}}(1,n)}$

Building rings from combinatorial objects

If H is some 'combinatorial object' (semigroup) and K is a field then we can build KH.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Building rings from combinatorial objects

If H is some 'combinatorial object' (semigroup) and K is a field then we can build KH.

Some of these are well-known:

group algebra;

polynomial ring (here $H = \{x^0, x^1, x^2,\}$)

many others (e.g. matrix rings, incidence rings, ...)

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

-

Gene Abrams

General path algebras

Let *E* be a directed graph. (We will assume *E* is finite for this talk, but analysis can be done in general.) $E = (E^0, E^1, r, s)$

The path algebra of E with coefficients in K is the K-algebra KS

S = the set of all directed paths in E,

University of Colorado @ Colorado Springs

3

multiplication of paths is juxtaposition. Denote by KE.

General path algebras

Let E be a directed graph. (We will assume E is finite for this talk, but analysis can be done in general.) $E = (E^0, E^1, r, s)$

The path algebra of E with coefficients in K is the K-algebra KS

S = the set of all directed paths in E,

multiplication of paths is juxtaposition. Denote by KE. In particular, in KE.

for each edge
$$e$$
, $s(e) \cdot e = e = e \cdot r(e)$
for each vertex v , $v \cdot v = v$

$$1_{\mathsf{K}\mathsf{E}} = \sum_{\mathsf{v}\in\mathsf{E}^0}\mathsf{v}.$$

3

Start with *E*, build its *double graph* \hat{E} .

Gene Abrams

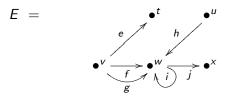
Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

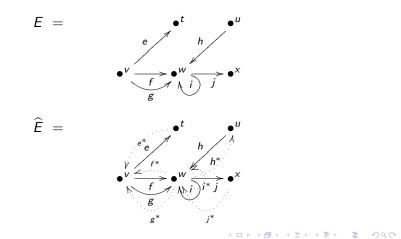
Start with *E*, build its *double graph* \hat{E} . Example:



< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

Start with *E*, build its *double graph* \hat{E} . Example:



University of Colorado @ Colorado Springs

Gene Abrams

Construct the path algebra $K\widehat{E}$.

Gene Abrams

Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

э

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E.

Gene Abrams

University of Colorado @ Colorado Springs

Building Leavitt path algebras

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E.

(just at those vertices v which are not sinks, and which emit only finitely many edges)

3

Gene Abrams

Building Leavitt path algebras

Construct the path algebra $K\widehat{E}$. Consider these relations in $K\widehat{E}$:

(CK1) $e^*e = r(e)$; and $f^*e = 0$ for $f \neq e$ (for all edges e, f in E).

(CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for each vertex v in E.

(just at those vertices v which are not *sinks*, and which emit only finitely many edges)

Definition

The Leavitt path algebra of ${\cal E}$ with coefficients in ${\cal K}$

$$L_{K}(E) = K\widehat{E} / < (CK1), (CK2) >$$

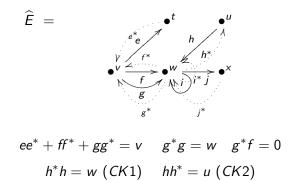
University of Colorado @ Colorado Springs

3

イロト イポト イヨト イヨト

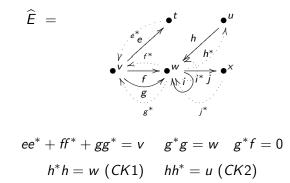
Gene Abrams

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:



Gene Abrams

Some sample computations in $L_{\mathbb{C}}(E)$ from the Example:



 $ff^* = \dots$ (no simplification) Note: $(ff^*)^2 = f(f^*f)f^* = ff^*$

Gene Abrams

Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

Standard algebras arising as Leavitt path algebras:

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < ⊇
 University of Colorado @ Colorado Springs

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Standard algebras arising as Leavitt path algebras:

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \xrightarrow{\bullet^{v_{n-1}}} \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

$$E = \bullet^{v} \bigcirc x$$

University of Colorado @ Colorado Springs

3

Then $L_{\mathcal{K}}(E) \cong \mathcal{K}[x, x^{-1}].$

Gene Abrams

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \downarrow \\ y_n \end{array}}^{y_3} y_2$$

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$.

Gene Abrams

Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \bullet^{v} \\ y_n \end{array}}^{y_2} y_1$$

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$.

 $L_{\mathcal{K}}(1, n)$ has generators and relations: $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in L_{\mathcal{K}}(1, n);$

Gene Abrams

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \bullet^{v} \\ y_n \end{array}}^{y_2} y_1$$

イロン 不同 とくほう イロン

University of Colorado @ Colorado Springs

3

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$.

 $L_{\mathcal{K}}(1, n)$ has generators and relations: $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in L_{\mathcal{K}}(1, n);$ $\sum_{i=1}^{n} y_i x_i = 1_{L_{\mathcal{K}}(1,n)}, \text{ and } x_i y_j = \delta_{i,j} 1_{L_{\mathcal{K}}(1,n)},$

Gene Abrams

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \bullet^{v} \\ y_n \end{array}}^{y_3} y_2$$

Then
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$$
.

 $L_{\mathcal{K}}(1, n)$ has generators and relations: $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in L_{\mathcal{K}}(1, n);$ $\sum_{i=1}^{n} y_i x_i = 1_{L_{\mathcal{K}}(1,n)},$ and $x_i y_j = \delta_{i,j} 1_{L_{\mathcal{K}}(1,n)},$ while $L_{\mathcal{K}}(R_n)$ has these SAME generators and relations, where we identify y_i^* with x_i .

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶
 University of Colorado @ Colorado Springs

1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$.

Gene Abrams

Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$.

1977: Cuntz gives construction of the C^{*}-algebras \mathcal{O}_n .

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

3

- 1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$.
- 1977: Cuntz gives construction of the C^{*}-algebras \mathcal{O}_n .

1980's: Cuntz and Krieger, and then many others generalize the \mathcal{O}_n construction to building C*-algebras based on the data given in 0/1 matrices.

イロン イロン イヨン イヨン

University of Colorado @ Colorado Springs

3

- 1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$.
- 1977: Cuntz gives construction of the C^{*}-algebras \mathcal{O}_n .

1980's: Cuntz and Krieger, and then many others generalize the \mathcal{O}_n construction to building C*-algebras based on the data given in 0/1 matrices.

1997-2000: Various authors realize that these algebras (and more) could be realized as C*-algebras built from the data of directed graphs: the graph C*-algebras $C^*(E)$.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

- 1962: Leavitt gives construction of $L_{\mathcal{K}}(1, n)$.
- 1977: Cuntz gives construction of the C^{*}-algebras \mathcal{O}_n .

1980's: Cuntz and Krieger, and then many others generalize the \mathcal{O}_n construction to building C^{*}-algebras based on the data given in 0/1 matrices.

1997-2000: Various authors realize that these algebras (and more) could be realized as C*-algebras built from the data of directed graphs: the graph C^* -algebras $C^*(E)$.

late spring 2004:

3

CBMS conference in Graph C*-algebras

file:///Users/geneabrams/Desktop/Research/VARIOUSTALKS/I ...

NSF GIF CBMS

Graph Algebras: Operator Algebras We Can See

NSF-CBMS REGIONAL RESEARCH CONFERENCE to be held May 31 -- June 4, 2004 at the University of Iowa

DESCRIPTION: A five day conference on C*-algebras associated to graphs that features 10 lectures by Jain Raeburn and additional talks by other distinguished speakers.

PRINCIPAL LECTURER: Iain Raeburn, University of Newcastle, Australia

ORGANIZERS: <u>Paul Muhly</u>, University of Iowa <u>David Pask</u>, University of Newcastle, Australia <u>Mark Tomforde</u>, University of Iowa

OVERVIEW | SCHEDULE | REGISTRATION | HOUSING | TRANSPORTATION

U

" U of Iowa Math Department Homepage

Gene Abrams

University of Colorado @ Colorado Springs

The connection

When $K = \mathbb{C}$, then $L_{\mathbb{C}}(E)$ may be viewed as a \mathbb{C} -subalgebra of $C^*(E)$.

Indeed,

$$L_{\mathbb{C}}(E) \hookrightarrow C^*(E)$$

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

is a dense *-subalgebra.

Gene Abrams

The connection

When $K = \mathbb{C}$, then $L_{\mathbb{C}}(E)$ may be viewed as a \mathbb{C} -subalgebra of $C^*(E)$.

Indeed,

$$L_{\mathbb{C}}(E) \hookrightarrow C^*(E)$$

is a dense *-subalgebra.

Graph C*-algebras without the topology?

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

(a)

University of Colorado @ Colorado Springs

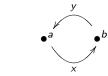
1 Leavitt path algebras: Introduction and Motivation

2 Algebraic properties

3 Projective modules

4 Connections and Applications

Gene Abrams



1. A cycle

Gene Abrams

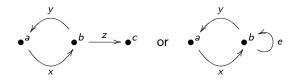
University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>



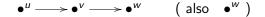
2. An exit for a cycle.



University of Colorado @ Colorado Springs

Gene Abrams

3a. *connects to* a vertex.



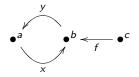
< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < Ξ</p>
University of Colorado @ Colorado Springs

Gene Abrams

3a. connects to a vertex.

$$\bullet^{u} \longrightarrow \bullet^{v} \longrightarrow \bullet^{w} \qquad (also \quad \bullet^{w})$$

3b. *connects to* a cycle.



University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Gene Abrams

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$:

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Gene Abrams

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$:

For which graphs E and fields K is $L_K(E)$ simple?

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Here's a natural question, especially in light of Bill Leavitt's result that $L_{\mathcal{K}}(1, n)$ is simple for all $n \geq 2$: For which graphs E and fields K is $L_{K}(E)$ simple? Note $L_{\mathcal{K}}(E)$ is simple for $E = \bullet \longrightarrow \bullet$ since $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$ and for and for $E = R_n = \bigvee_{V \in V} y_1$ since $L_K(E) \cong L_K(1, n)$

but not simple for

$$E = R_1 = \bullet^{\mathsf{v}} \mathcal{N} \times \text{ since } L_{\mathcal{K}}(E) \cong \overset{\mathsf{K}}{\underset{\mathsf{O}}{\times}} \overset{\mathsf{K}}{\underset{\mathsf{O}}{\times}} \overset{\mathsf{I}}{\underset{\mathsf{O}}{\times}} \overset{\mathsf{I}}{\underset{\mathsf{O$$

University of Colorado @ Colorado Springs

Gene Abrams

Theorem

- (A -, Aranda Pino, 2005) $L_K(E)$ is simple if and only if:
 - Every vertex connects to every cycle and to every sink in E, and

A (1) > A (2) > A

University of Colorado @ Colorado Springs

3 x 3

2 Every cycle in E has an exit.

Gene Abrams

Theorem

- (A -, Aranda Pino, 2005) $L_K(E)$ is simple if and only if:
 - Every vertex connects to every cycle and to every sink in E, and

• • • • • • • • • • • • • •

University of Colorado @ Colorado Springs

3 x 3

2 Every cycle in E has an exit.

Note: No role played by K.

Gene Abrams

Other ring-theoretic properties of Leavitt path algebras

We know precisely the graphs *E* for which $L_{\mathcal{K}}(E)$ has various other properties, e.g.:

- 4 同 6 4 日 6 4 日 6

University of Colorado @ Colorado Springs

- **1** one-sided chain conditions
- 2 prime
- **3** von Neumann regular
- 4 two-sided chain conditions
- 5 primitive

Many more.

(a)

University of Colorado @ Colorado Springs

1 Leavitt path algebras: Introduction and Motivation

2 Algebraic properties

3 Projective modules

4 Connections and Applications

Gene Abrams

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong \mathbb{R}^n$ for some Q, some $n \in \mathbb{N}$.

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

э

Recall: *P* is a *finitely generated projective R*-module in case $P \oplus Q \cong R^n$ for some *Q*, some $n \in \mathbb{N}$. Key example: *R* itself, or any R^n .

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Recall: P is a *finitely generated projective* R-module in case $P \oplus Q \cong R^n$ for some Q, some $n \in \mathbb{N}$. Key example: R itself, or any R^n . Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1 - f) = R^1$.

So, for example, in $R = M_2(\mathbb{R})$, $P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$ is a finitely projective *R*-module. Note $P \ncong R^n$ for any *n*.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

Recall: P is a finitely generated projective R-module in case $P \oplus Q \cong \mathbb{R}^n$ for some Q, some $n \in \mathbb{N}$. Key example: R itself, or any R^n . Additional examples: Rf where f is idempotent (i.e., $f^2 = f$), since $Rf \oplus R(1-f) = R^1$.

So, for example, in $R = M_2(\mathbb{R})$, $P = M_2(\mathbb{R})e_{1,1} = \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix}$

is a finitely projective R-module. Note $P \ncong R^n$ for any n.

So $L_{\mathcal{K}}(E)$ contains projective modules of the form $L_{\mathcal{K}}(E)ee^*$ for each edge e of E.

Gene Abrams

3

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation \oplus , this becomes an abelian monoid. Note *R* itself plays a special role in $\mathcal{V}(R)$.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

The monoid $\mathcal{V}(R)$

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation \oplus , this becomes an abelian monoid. Note *R* itself plays a special role in $\mathcal{V}(R)$.

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Gene Abrams

The monoid $\mathcal{V}(R)$

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation \oplus , this becomes an abelian monoid. Note *R* itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Example. $S = M_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

Gene Abrams

The monoid $\mathcal{V}(R)$

 $\mathcal{V}(R)$ denotes the isomorphism classes of finitely generated projective (left) *R*-modules. With operation \oplus , this becomes an abelian monoid. Note *R* itself plays a special role in $\mathcal{V}(R)$.

Example. R = K, a field. Then $\mathcal{V}(R) \cong \mathbb{Z}^+$.

Example. $S = M_d(K)$, K a field. Then $\mathcal{V}(S) \cong \mathbb{Z}^+$. (But note that the 'position' of S in $\mathcal{V}(S)$ is different than the position of R in $\mathcal{V}(R)$.)

Remark: Given a ring R, it is in general not easy to compute $\mathcal{V}(R)$.

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

Gene Abrams

Here's a 'natural' monoid arising from any directed graph E.

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

э

Here's a 'natural' monoid arising from any directed graph *E*. Associate to *E* the abelian monoid $(M_E, +)$:

$$M_E = \{\sum_{v \in E^0} n_v a_v\}$$

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

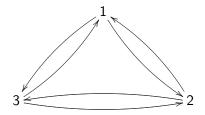
3

with $n_v \in \mathbb{Z}^+$ for all $v \in E^0$.

Relations in M_E are given by: $a_v = \sum_{e \in s^{-1}(v)} a_{r(e)}$.

Gene Abrams

Example. Let *F* be the graph



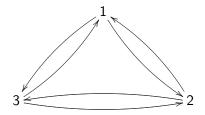
So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$.

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨ

Gene Abrams

Example. Let *F* be the graph



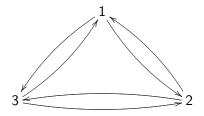
イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$. It's not hard to get:

Gene Abrams

Example. Let *F* be the graph



So M_F consists of elements $\{n_1a_1 + n_2a_2 + n_3a_3\}$ $(n_i \in \mathbb{Z}^+)$, subject to: $a_1 = a_2 + a_3$; $a_2 = a_1 + a_3$; $a_3 = a_1 + a_2$. It's not hard to get: $M_F = \{0, a_1, a_2, a_3, a_1 + a_2 + a_3\}$. In particular, $M_F \setminus \{0\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

University of Colorado @ Colorado Springs

The monoid $\mathcal{V}(L_{\mathcal{K}}(E))$

Example:

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ y_2 \\ y_1 \\ y_n \end{array}}_{y_n}$$

Then M_E is the set of symbols of the form

$$\mathit{n_1a_v}~(\mathit{n_1}\in\mathbb{Z}^+)$$

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

subject to the relation: $a_v = na_v$

Gene Abrams

The monoid $\mathcal{V}(L_{\mathcal{K}}(E))$

Example:

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ y_2 \\ y_1 \\ y_n \end{array}}_{y_n}$$

Then M_E is the set of symbols of the form

$$\mathit{n_1a_v}~(\mathit{n_1}\in\mathbb{Z}^+)$$

subject to the relation: $a_v = na_v$

So here,
$$M_E = \{0, a_v, 2a_v, ..., (n-1)a_v\}$$
.
In particular, $M_E \setminus \{0\} \cong \mathbb{Z}_{n-1}$.

Gene Abrams

Leavitt path algebras: an overview

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

The monoid $\mathcal{V}(L_{\mathcal{K}}(E))$

Theorem

(P. Ara, M.A. Moreno, E. Pardo, 2007) For any row-finite directed graph E,

 $\mathcal{V}(L_{\mathcal{K}}(E))\cong M_{E}.$

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

3

Moreover, $L_{K}(E)$ is universal with this property.

Gene Abrams

Historical Note, Part 2

So we can think of Leavitt path algebras in two ways:

- 1) the "quotient of a path algebra" approach, and
- 2) the "universal algebra which supports M_E as its \mathcal{V} -monoid" approach.
- These were developed in parallel.
- The two approaches together have complemented each other in the development of the subject.

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Here's a property (most likely unfamiliar to most of you ...)

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Here's a property (most likely unfamiliar to most of you ...) We call a unital simple ring *R* purely infinite simple if *R* is not a division ring, and for every $r \neq 0$ in *R* there exists α, β in *R* for which

 $\alpha r\beta = 1_R.$

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Gene Abrams

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

- 4 回 > - 4 回 > - 4 回 >

University of Colorado @ Colorado Springs

Gene Abrams

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

Which Leavitt path algebras are purely infinite simple?

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple,

University of Colorado @ Colorado Springs

3

Gene Abrams

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\kappa}(E)$ is purely infinite simple \Leftrightarrow $L_{\kappa}(E)$ is simple, and E contains a cycle

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

э

Gene Abrams

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\kappa}(E)$ is purely infinite simple \Leftrightarrow $L_{\kappa}(E)$ is simple, and E contains a cycle \Leftrightarrow $M_E \setminus \{0\}$ is a group

イロン 不同 とくほう イロン

University of Colorado @ Colorado Springs

3

Gene Abrams

Leavitt showed that the Leavitt algebras $L_{\mathcal{K}}(1, n)$ are in fact purely infinite simple.

Which Leavitt path algebras are purely infinite simple?

Theorem:

 $L_{\mathcal{K}}(E)$ is purely infinite simple \Leftrightarrow $L_{\mathcal{K}}(E)$ is simple, and E contains a cycle \Leftrightarrow $M_E \setminus \{0\}$ is a group

Moreover, in this situation, we can easily calculate $\mathcal{V}(L_{\mathcal{K}}(E))$ using the Smith normal form of the matrix $I - A_E$.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

1 Leavitt path algebras: Introduction and Motivation

- 2 Algebraic properties
- 3 Projective modules
- 4 Connections and Applications

Gene Abrams

Connections and Applications

In addition to expected types of results, during the "Adolescent Years" years Leavitt path algebras have played an interesting / important role in resolving various questions outside the subject per se.

- Kaplansky's question on prime non-primitive von Neumann regular algebras.
- 2 The realization question for von Neumann regular rings.
- **3** Constructing simple Lie algebras.
- 4 Connections to various C*-algebras.
- **5** Constructing algebras with prescribed sets of prime / primitive ideals

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

One such connection:

Let $R = L_{\mathbb{C}}(1, n)$. So $_{R}R \cong _{R}R^{n}$.

So this gives in particular $R \cong M_n(R)$ as rings.

Which then (for free) gives some additional isomorphisms, e.g.

$$R \cong \mathrm{M}_{n^i}(R)$$

イロン イロン イヨン イヨン

University of Colorado @ Colorado Springs

3

for any $i \geq 1$.

Gene Abrams

One such connection:

Let
$$R = L_{\mathbb{C}}(1, n)$$
. So $_{R}R \cong _{R}R^{n}$.

So this gives in particular $R \cong M_n(R)$ as rings.

Which then (for free) gives some additional isomorphisms, e.g.

$$R \cong \mathrm{M}_{n^i}(R)$$

for any $i \geq 1$.

Also, $_RR \cong _RR^n \cong _RR^{2n-1} \cong _RR^{3n-2} \cong ...$, which also in turn yield ring isomorphisms

$$R \cong M_n(R) \cong M_{2n-1}(R) \cong M_{3n-2}(R) \cong \dots$$

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

Question: Are there other matrix sizes *d* for which $R \cong M_d(R)$? Answer: In general, yes.

Gene Abrams

✓ □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Question: Are there other matrix sizes *d* for which $R \cong M_d(R)$? Answer: In general, yes.

For instance, if R = L(1, 4), then it's not hard to show that $R \cong M_2(R)$ as rings (even though $R \ncong R^2$ as modules). Idea: 2 and 4 are nicely related, so these eight matrices inside $M_2(L(1, 4))$ "work":

$$X_1 = \begin{pmatrix} x_1 & 0 \\ x_2 & 0 \end{pmatrix}, \ X_2 = \begin{pmatrix} x_3 & 0 \\ x_4 & 0 \end{pmatrix}, \ X_3 = \begin{pmatrix} 0 & x_1 \\ 0 & x_2 \end{pmatrix}, \ X_4 = \begin{pmatrix} 0 & x_3 \\ 0 & x_4 \end{pmatrix}$$

together with their duals

$$Y_{1} = \begin{pmatrix} y_{1} & y_{2} \\ 0 & 0 \end{pmatrix}, \ Y_{2} = \begin{pmatrix} y_{3} & y_{4} \\ 0 & 0 \end{pmatrix}, \ Y_{3} = \begin{pmatrix} 0 & 0 \\ y_{1} & y_{2} \end{pmatrix}, \ Y_{4} = \begin{pmatrix} 0 & 0 \\ y_{3} & y_{4} \end{pmatrix}$$

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

In general, using this same idea, we can show that:

if $d|n^t$ for some $t \in \mathbb{N}$, then $L(1, n) \cong M_d(L(1, n))$.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

In general, using this same idea, we can show that:

if
$$d|n^t$$
 for some $t \in \mathbb{N}$, then $L(1, n) \cong \mathrm{M}_d(L(1, n)).$

On the other hand ...

If R = L(1, n), then the "type" of R is n - 1. (Think: "smallest difference"). Bill Leavitt showed the following in his 1962 paper:

The type of
$$M_d(L(1, n))$$
 is $\frac{n-1}{g.c.d.(d, n-1)}$.

In particular, if g.c.d.(d, n-1) > 1, then $L(1, n) \ncong M_d(L(1, n))$.

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Gene Abrams

In general, using this same idea, we can show that:

if
$$d|n^t$$
 for some $t \in \mathbb{N}$, then $L(1, n) \cong \mathrm{M}_d(L(1, n))$.

On the other hand ...

If R = L(1, n), then the "type" of R is n - 1. (Think: "smallest difference"). Bill Leavitt showed the following in his 1962 paper:

The type of
$$M_d(L(1, n))$$
 is $\frac{n-1}{g.c.d.(d, n-1)}$.

In particular, if g.c.d.(d, n-1) > 1, then $L(1, n) \ncong M_d(L(1, n))$.

Conjecture: $L(1, n) \cong M_d(L(1, n)) \Leftrightarrow g.c.d.(d, n-1) = 1.$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Gene Abrams

In general, using this same idea, we can show that:

if
$$d|n^t$$
 for some $t \in \mathbb{N}$, then $L(1, n) \cong \mathrm{M}_d(L(1, n))$.

On the other hand ...

If R = L(1, n), then the "type" of R is n - 1. (Think: "smallest difference"). Bill Leavitt showed the following in his 1962 paper:

The type of
$$M_d(L(1, n))$$
 is $\frac{n-1}{g.c.d.(d, n-1)}$.

In particular, if g.c.d.(d, n-1) > 1, then $L(1, n) \ncong M_d(L(1, n))$.

Conjecture: $L(1, n) \cong M_d(L(1, n)) \Leftrightarrow g.c.d.(d, n-1) = 1.$

(Note: $d|n^t \Rightarrow g.c.d.(d, n-1) = 1.$)

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Smallest interesting pair: Is $L(1,5) \cong M_3(L(1,5))$?

We are led "naturally" to consider these five matrices (and their duals) in ${\rm M}_3({\it L}(1,5)):$

$$\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} x_4 & 0 & 0 \\ x_5 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_1^2 \\ 0 & 0 & x_2 x_1 \\ 0 & 0 & x_3 x_1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 x_1 \\ 0 & 0 & x_5 x_1 \\ 0 & 0 & x_2 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_3 \\ 0 & 0 & x_4 \\ 0 & 0 & x_5 \end{pmatrix}$$

(人間) システン イラン

University of Colorado @ Colorado Springs

Everything went along swimmingly...

Smallest interesting pair: Is $L(1,5) \cong M_3(L(1,5))$?

We are led "naturally" to consider these five matrices (and their duals) in ${\rm M}_3({\it L}(1,5))$:

$$\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} x_4 & 0 & 0 \\ x_5 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_1^2 \\ 0 & 0 & x_2 x_1 \\ 0 & 0 & x_3 x_1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 x_1 \\ 0 & 0 & x_5 x_1 \\ 0 & 0 & x_2 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_3 \\ 0 & 0 & x_4 \\ 0 & 0 & x_5 \end{pmatrix}$$

Everything went along swimmingly... But we couldn't see how to generate the matrix units $e_{1,3}$ and $e_{3,1}$ inside $M_3(L(1,5))$ using these ten matrices.

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

Breakthrough (came from an analysis of isomorphisms between more general Leavitt path algebras) ... we were using the wrong ten matrices.

Gene Abrams

 < □ >
 < ⊇ >
 ≥

 University of Colorado @ Colorado Springs

Breakthrough (came from an analysis of isomorphisms between more general Leavitt path algebras) ... we were using the wrong ten matrices. Original set:

$$\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} x_4 & 0 & 0 \\ x_5 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_1^2 \\ 0 & 0 & x_2 x_1 \\ 0 & 0 & x_3 x_1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 x_1 \\ 0 & 0 & x_5 x_1 \\ 0 & 0 & x_2 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_3 \\ 0 & 0 & x_4 \\ 0 & 0 & x_5 \end{pmatrix}$$

Gene Abrams

Breakthrough (came from an analysis of isomorphisms between more general Leavitt path algebras) ... we were using the wrong ten matrices. Original set:

$$\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} x_4 & 0 & 0 \\ x_5 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_1^2 \\ 0 & 0 & x_2 x_1 \\ 0 & 0 & x_3 x_1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 x_1 \\ 0 & 0 & x_5 x_1 \\ 0 & 0 & x_2 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_3 \\ 0 & 0 & x_4 \\ 0 & 0 & x_5 \end{pmatrix}$$

Instead, this set (together with duals) works:

$$\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} x_4 & 0 & 0 \\ x_5 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_1^2 \\ 0 & 0 & x_2 x_1 \\ 0 & 0 & x_3 x_1 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 x_1 \\ 0 & 0 & x_5 x_1 \\ 0 & 0 & x_2 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & x_4 \\ 0 & 0 & x_3 \\ 0 & 0 & x_5 \end{pmatrix}$$

Gene Abrams

Theorem

(A-, Ánh, Pardo; Crelle's J. 2008) For any field K,

$$L_{\mathcal{K}}(1,n) \cong \mathrm{M}_d(L_{\mathcal{K}}(1,n)) \Leftrightarrow g.c.d.(d,n-1) = 1.$$

Indeed, more generally,

$$\mathrm{M}_d(L_{\mathcal{K}}(1,n)) \cong \mathrm{M}_{d'}(L_{\mathcal{K}}(1,n')) \Leftrightarrow$$

 $n = n' \text{ and } g.c.d.(d,n-1) = g.c.d.(d',n-1).$

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

э

Moreover, we can write down the isomorphisms explicitly.

Gene Abrams

Theorem

(A-, Ánh, Pardo; Crelle's J. 2008) For any field K,

$$L_{\mathcal{K}}(1,n) \cong \mathrm{M}_d(L_{\mathcal{K}}(1,n)) \Leftrightarrow g.c.d.(d,n-1) = 1.$$

Indeed, more generally,

$$\mathrm{M}_d(L_{\mathcal{K}}(1,n)) \cong \mathrm{M}_{d'}(L_{\mathcal{K}}(1,n')) \Leftrightarrow$$

$$n = n' \text{ and } g.c.d.(d,n-1) = g.c.d.(d',n-1).$$

Moreover, we can write down the isomorphisms explicitly.

Along the way, some elementary (but apparently new) number theory ideas come into play.

Gene Abrams

University of Colorado @ Colorado Springs

< ロ > < 同 > < 回 > < 回 >

Given n, d with g.c.d.(d, n-1) = 1, there is a "natural" partition of $\{1, 2, \ldots, n\}$ into two disjoint subsets.

> ・ロン ・回と ・ヨン ・ ヨン University of Colorado @ Colorado Springs

э

Gene Abrams

Given n, d with g.c.d.(d, n-1) = 1, there is a "natural" partition of $\{1, 2, ..., n\}$ into two disjoint subsets.

Here's what made this second set of matrices work. Using this partition in the particular case n = 5, d = 3, then the partition of $\{1, 2, 3, 4, 5\}$ turns out to be the two sets

 $\{1,4\}$ and $\{2,3,5\}$.

The matrices that "worked" are ones where we fill in the last columns with terms of the form $x_i x_1^j$ in such a way that *i* is in the same subset as the row number of that entry.

Leavitt path algebras: an overview

・ロト ・回ト ・ヨト ・ヨト

3

Given n, d with g.c.d.(d, n-1) = 1, there is a "natural" partition of $\{1, 2, ..., n\}$ into two disjoint subsets.

Here's what made this second set of matrices work. Using this partition in the particular case n = 5, d = 3, then the partition of $\{1, 2, 3, 4, 5\}$ turns out to be the two sets

 $\{1,4\}$ and $\{2,3,5\}$.

The matrices that "worked" are ones where we fill in the last columns with terms of the form $x_i x_1^j$ in such a way that *i* is in the same subset as the row number of that entry.

The number theory underlying this partition in the general case where g.c.d.(d, n-1) = 1 is elementary. But we are hoping to find some other 'context' in which this partition process arises.

Computations when n = 5, d = 3.

gcd(3, 5-1) = 1. Now $5 = 1 \cdot 3 + 2$, so that r = 2, r - 1 = 1, and define s = d - (r - 1) = 3 - 1 = 2.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \le i \le d$). This will necessarily give all integers between 1 and d.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

Computations when n = 5, d = 3.

gcd(3, 5-1) = 1. Now $5 = 1 \cdot 3 + 2$, so that r = 2, r - 1 = 1, and define s = d - (r - 1) = 3 - 1 = 2.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \le i \le d$). This will necessarily give all integers between 1 and d.

So here we get the sequence 1, 3, 2.

・ロ・ ・四・ ・ヨ・ ・ ヨ・ University of Colorado @ Colorado Springs

3

Computations when n = 5, d = 3.

gcd(3, 5-1) = 1. Now $5 = 1 \cdot 3 + 2$, so that r = 2, r - 1 = 1, and define s = d - (r - 1) = 3 - 1 = 2.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \le i \le d$). This will necessarily give all integers between 1 and d.

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and including r - 1, and those after. Since r - 1 = 1, here we get

$$\{1,2,3\} = \{1\} \cup \{2,3\}.$$

・ロ・ ・四・ ・ヨ・ ・ ヨ・

University of Colorado @ Colorado Springs

3

Computations when n = 5, d = 3.

gcd(3, 5-1) = 1. Now $5 = 1 \cdot 3 + 2$, so that r = 2, r - 1 = 1, and define s = d - (r - 1) = 3 - 1 = 2.

Consider the sequence starting at 1, and increasing by s each step, and interpret mod d ($1 \le i \le d$). This will necessarily give all integers between 1 and d.

So here we get the sequence 1, 3, 2.

Now break this set into two pieces: those integers up to and including r-1, and those after. Since r-1=1, here we get

$$\{1,2,3\} = \{1\} \cup \{2,3\}.$$

Now extend these two sets mod 3 to all integers up to 5.

$$\{1,4\} \ \cup \{2,3,5\}$$

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Does this look familiar?

Complete description: academics.uccs.edu/gabrams

Gene Abrams

Leavitt path algebras: an overview

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ >
 University of Colorado @ Colorado Springs

Corollary. (Matrices over the Cuntz C*-algebras)

$$\mathcal{O}_n \cong \mathrm{M}_d(\mathcal{O}_n) \Leftrightarrow g.c.d.(d, n-1) = 1.$$

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

(And the isomorphisms are explicitly described.)

Gene Abrams

A beautiful, surprising(?) application:

For each pair of positive integers n, r, there exists an infinite, finitely presented simple group $G_{n,r}^+$. These were introduced in the mid-1970's. "Higman-Thompson groups".

Gene Abrams

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶
 University of Colorado @ Colorado Springs

A beautiful, surprising(?) application:

For each pair of positive integers n, r, there exists an infinite, finitely presented simple group $G_{n,r}^+$. These were introduced in the mid-1970's. "Higman-Thompson groups".

Higman knew *some* conditions regarding isomorphisms between these groups, but did not have a complete classification.

University of Colorado @ Colorado Springs

Gene Abrams

A beautiful, surprising(?) application:

For each pair of positive integers n, r, there exists an infinite, finitely presented simple group $G_{n,r}^+$. These were introduced in the mid-1970's. "Higman-Thompson groups".

Higman knew *some* conditions regarding isomorphisms between these groups, but did not have a complete classification.

Theorem. (E. Pardo, 2011)

$$G_{n,r}^+ \cong G_{m,s}^+ \quad \Leftrightarrow \quad m = n \text{ and } g.c.d.(r, n-1) = g.c.d.(s, n-1).$$

University of Colorado @ Colorado Springs

-

Gene Abrams

A beautiful, surprising(?) application:

For each pair of positive integers n, r, there exists an infinite, finitely presented simple group $G_{n,r}^+$. These were introduced in the mid-1970's. "Higman-Thompson groups".

Higman knew *some* conditions regarding isomorphisms between these groups, but did not have a complete classification.

Theorem. (E. Pardo, 2011)

$$G_{n,r}^+ \cong G_{m,s}^+ \quad \Leftrightarrow \quad m = n \text{ and } g.c.d.(r, n-1) = g.c.d.(s, n-1).$$

Proof. Show that $G_{n,r}^+$ can be realized as an appropriate subgroup of the invertible elements of $M_r(L_{\mathbb{C}}(1, n))$, and then use the explicit isomorphisms provided in the A -, Anh, Pardo result.

・ロト ・ 回 ト ・ 目 ト ・ 目 ・ りへの

University of Colorado @ Colorado Springs

Gene Abrams

(1)
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow ? ? ?$$

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

(1)
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow ? ? ?$$

Remark: $K_0(R)$ is the universal group of $\mathcal{V}(R)$.

Gene Abrams

<ロ> <同> <同> < 回> < 回> University of Colorado @ Colorado Springs

э

(1)
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow ? ? ?$$

Remark: $K_0(R)$ is the universal group of $\mathcal{V}(R)$.

Ideas from symbolic dynamics come into play here. Using some results on flow equivalence, we have been able to show:

Theorem. (A -, Louly, Pardo, Smith, 2011) If $L_{\mathcal{K}}(E)$ and $L_{\mathcal{K}}(F)$ are purely infinite simple Leavitt path algebras such that

 $(K_0(L_K(E)), [1_{L_K(E)}]) \cong (K_0(L_K(F)), [1_{L_K(F)}]),$

(1)
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow ? ? ?$$

Remark: $K_0(R)$ is the universal group of $\mathcal{V}(R)$.

Ideas from symbolic dynamics come into play here. Using some results on flow equivalence, we have been able to show:

Theorem. (A -, Louly, Pardo, Smith, 2011) If $L_{\mathcal{K}}(E)$ and $L_{\mathcal{K}}(F)$ are purely infinite simple Leavitt path algebras such that

$$(K_0(L_K(E)), [1_{L_K(E)}]) \cong (K_0(L_K(F)), [1_{L_K(F)}]),$$

and $\det(I - A_E^t) = \det(I - A_F^t),$

イロト イポト イヨト イヨト

University of Colorado @ Colorado Springs

-

then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$.

Gene Abrams

(1)
$$L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \Leftrightarrow ? ? ?$$

Remark: $K_0(R)$ is the universal group of $\mathcal{V}(R)$.

Ideas from symbolic dynamics come into play here. Using some results on flow equivalence, we have been able to show:

Theorem. (A -, Louly, Pardo, Smith, 2011) If $L_{\mathcal{K}}(E)$ and $L_{\mathcal{K}}(F)$ are purely infinite simple Leavitt path algebras such that

$$(K_0(L_{\mathcal{K}}(E)), [1_{L_{\mathcal{K}}(E)}]) \cong (K_0(L_{\mathcal{K}}(F)), [1_{L_{\mathcal{K}}(F)}]),$$

and $\det(I - A_E^t) = \det(I - A_F^t),$

then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$. Can we drop the determinant hypothesis?

In particular, if

is $L_{\mathbb{C}}(E_4) \cong L_{\mathbb{C}}(1,2)$?

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

In particular, if

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

э

is $L_{\mathbb{C}}(E_4) \cong L_{\mathbb{C}}(1,2)$?

The answer will be interesting, however it plays out.

Gene Abrams

In particular, if

イロン イロン イヨン イヨン

University of Colorado @ Colorado Springs

3

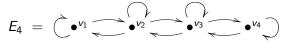
is $L_{\mathbb{C}}(E_4) \cong L_{\mathbb{C}}(1,2)$?

The answer will be interesting, however it plays out.

Note: $C^*(E_4) \cong \mathcal{O}_2$.

Gene Abrams

In particular, if



is $L_{\mathbb{C}}(E_4) \cong L_{\mathbb{C}}(1,2)$?

The answer will be interesting, however it plays out.

Note: $C^*(E_4) \cong \mathcal{O}_2$. Indeed, a very deep theorem in C*-algebras says that in the analogous result we CAN drop the determinant hypothesis.

University of Colorado @ Colorado Springs

In particular, if

is $L_{\mathbb{C}}(E_4) \cong L_{\mathbb{C}}(1,2)$?

The answer will be interesting, however it plays out.

Note: $C^*(E_4) \cong \mathcal{O}_2$. Indeed, a very deep theorem in C*-algebras says that in the analogous result we CAN drop the determinant hypothesis.

・ロン ・四 と ・ ヨ と ・ ヨ と …

University of Colorado @ Colorado Springs

Note: $L_{\mathbb{Z}}(E_4) \ncong L_{\mathbb{Z}}(1,2)$ via any *-preserving map.

Gene Abrams

(2) For any graph E there is an intimate relationship between $L_{\mathbb{C}}(E)$ and $C^{*}(E)$. There are many theorems of the form:

 $L_{\mathbb{C}}(E)$ has algebraic property $\mathcal{P} \Leftrightarrow C^*(E)$ has analytic property \mathcal{P}

Gene Abrams

University of Colorado @ Colorado Springs

-

(2) For any graph *E* there is an intimate relationship between $L_{\mathbb{C}}(E)$ and $C^*(E)$. There are many theorems of the form:

 $L_{\mathbb{C}}(E)$ has algebraic property $\mathcal{P} \Leftrightarrow C^*(E)$ has analytic property \mathcal{P}

but the proofs are not direct! They all are based on showing that the two properties are both equivalent to

E has graph property Q.

イロン 不同 とくほう イロン

University of Colorado @ Colorado Springs

-

Why this happens is still a mystery.

Questions?

Thank you.

More historical info: "Leavitt path algebras: the first decade", Bulletin of Mathematical Sciences 5(1), 2015, pp. 59-120.

Gene Abrams

University of Colorado @ Colorado Springs

< 口 > < 同 >

The partition of $\{1, 2, ..., n\}$ induced by d when g.c.d.(d, n-1) = 1

Suppose g.c.d.(d, n - 1) = 1. Write

$$n = dt + r$$
 with $1 \le r \le d$.

Let s denote d - (r - 1). It is easy to show that g.c.d.(d, n - 1) = 1 implies g.c.d.(d, s) = 1. We consider the sequence $\{h_i\}_{i=1}^d$ of integers, whose i^{th} entry is given by

$$h_i = 1 + (i - 1)s \pmod{d}.$$

University of Colorado @ Colorado Springs

The integers h_i are understood to be taken from the set $\{1, 2, ..., d\}$.

Because g.c.d.(d, s) = 1, basic number theory yields that the set of entries $\{h_1, h_2, ..., h_d\}$ equals the set $\{1, 2, ..., d\}$ (in some order). Our interest lies in a decomposition of $\{1, 2, ..., d\}$ effected by the sequence $h_1, h_2, ..., h_d$, as follows.

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

We let d_1 denote the integer for which

$$h_{d_1}=r-1$$

in the previously defined sequence. We denote by \hat{S}_1 the following subset of $\{1, 2, ..., d\}$:

$$\hat{S}_1 = \{h_i | 1 \le i \le d_1\}.$$

We denote by \hat{S}_2 the complement of \hat{S}_1 in $\{1, 2, ..., d\}$. We now construct a partition $S_1 \cup S_2$ of $\{1, 2, ..., n\}$ by defining, for each $j \in \{1, 2, ..., n\}$ and for $i \in \{1, 2\}$,

 $j \in S_i$ precisely when $j \equiv j' \pmod{d}$ for $j' \in \{1, 2, ..., d\}$, and $j' \in \hat{S}_i$.

(In other words, we extend the partition $\hat{S}_1 \cup \hat{S}_2$ of $\{1, 2, ..., d\}$ to a partition $S_1 \cup S_2$ of $\{1, 2, ..., n\}$ by extending mod d).

Example. Suppose n = 35, d = 13. Then gcd(13, 35 - 1) = 1, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that r = 9, r - 1 = 8, and s = d - (r - 1) = 13 - 8 = 5. Then we consider the sequence starting at 1, and increasing by *s* each step, and interpret mod *d*. (This will give all integers between 1 and *d*.)

<ロ> <同> <同> < 回> < 回>

University of Colorado @ Colorado Springs

Gene Abrams

Example. Suppose n = 35, d = 13. Then gcd(13, 35 - 1) = 1, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that r = 9, r - 1 = 8, and s = d - (r - 1) = 13 - 8 = 5. Then we consider the sequence starting at 1, and increasing by *s* each step, and interpret mod *d*. (This will give all integers between 1 and *d*.) So here we get the sequence 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9.

・ロト ・回ト ・ヨト ・ヨト

University of Colorado @ Colorado Springs

3

Gene Abrams

Example. Suppose n = 35, d = 13. Then gcd(13, 35 - 1) = 1, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that r = 9, r - 1 = 8, and s = d - (r - 1) = 13 - 8 = 5. Then we consider the sequence starting at 1, and increasing by s each step, and interpret mod d. (This will give all integers between 1 and d.) So here we get the sequence 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9. Now break this set into two pieces: those integers up to and including r - 1, and those after. Since r - 1 = 8, here we get

 $\{1, 2, \dots, 13\} = \{1, 3, 6, 8, 11\} \cup \{2, 4, 5, 7, 9, 10, 12, 13\}.$

3

Example. Suppose n = 35, d = 13. Then gcd(13, 35 - 1) = 1, so we are in the desired situation. Now $35 = 2 \cdot 13 + 9$, so that r = 9, r - 1 = 8, and s = d - (r - 1) = 13 - 8 = 5. Then we consider the sequence starting at 1, and increasing by *s* each step, and interpret mod *d*. (This will give all integers between 1 and *d*.) So here we get the sequence 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9. Now break this set into two pieces: those integers up to and including r - 1, and those after. Since r - 1 = 8, here we get

 $\{1,2,...,13\}=\{1,3,6,8,11\}\cup\{2,4,5,7,9,10,12,13\}.$

Now extend these two sets mod 13 to all integers up to 35.

 $\{1, 3, 6, 8, 11, 14, 16, 19, 21, 24, 27, 29, 32, 34\} \cup$

 $\{2,4,5,7,9,10,12,13,15,17,18,20,22,23,25,26,28,30,31,33,35\}$